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SHARP AFFINE LP SOBOLEV INEQUALITIES

ERWIN LUTWAK, DEANE YANG & GAOYONG ZHANG

Abstract
A sharp affine Lp Sobolev inequality for functions on Euclidean n-space is
established. This new inequality is significantly stronger than (and directly
implies) the classical sharp Lp Sobolev inequality of Aubin and Talenti, even
though it uses only the vector space structure and standard Lebesgue mea-
sure on R

n. For the new inequality, no inner product, norm, or conformal
structure is needed; the inequality is invariant under all affine transforma-
tions of R

n.

0. Introduction

In this paper we prove a sharp affine Lp Sobolev inequality for func-
tions on R

n. The new inequality is significantly stronger than (and
directly implies) the classical sharp Lp Sobolev inequality of Aubin [2]
and Talenti [39], even though it uses only the vector space structure
and standard Lebesgue measure on R

n. For the new inequality, no in-
ner product, norm, or conformal structure is needed at all. In other
words, the inequality is invariant under all affine transformations of
R

n. That such an inequality exists is surprising because the classical
sharp Lp Sobolev inequality relies strongly on the Euclidean geometric
structure of R

n, especially on the isoperimetric inequality.
Zhang [42] formulated and proved the sharp affine L1 Sobolev in-

equality and established its equivalence to an L1 affine isoperimetric
inequality that is also proved in [42]. He also showed that the affine L1

Sobolev inequality is stronger than the classical L1 Sobolev inequality.
The L1 Sobolev inequality is known to be equivalent to the isoperi-

metric inequality (see, for example, [17], [18], [34], [10], [35], and [38]).
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18 e. lutwak, d. yang & g. zhang

The geometry behind the sharp Lp Sobolev inequality is also the isoperi-
metric inequality. For the affine Sobolev inequalities the situation is
quite different. The geometric inequality and the critical tools used to
establish the affine L1 Sobolev inequality are not strong enough to en-
able us to establish the affine Lp Sobolev inequality for p > 1. A new
geometric inequality and new tools are needed. The inequality needed
is an affine Lp affine isoperimetric inequality recently established by
the authors in [31] (see Campi and Gronchi [11] for a recent alternate
approach). We will also need the solution of an Lp extension of the clas-
sical Minkowski problem obtained in [29]. It is crucial to observe that
while the geometric core of the classical Lp Sobolev inequality (i.e., the
isoperimetric inequality) is the same for all p, the geometric inequality
(i.e., the affine Lp isoperimetric inequality) behind the new affine Lp

Sobolev inequality is different for different p.
Let R

n denote n–dimensional Euclidean space; throughout we will
assume that n ≥ 2. Let H1,p(Rn) denote the usual Sobolev space of
real-valued functions of R

n with Lp partial derivatives.
The classical sharp Lp Sobolev inequality of Aubin [2] and Talenti

[39] states that if f ∈ H1,p(Rn), with real p satisfying 1 < p < n, and if
q is given by 1

q = 1
p − 1

n , then(∫
Rn

|∇f |p dx
) 1

p

≥ c0 ‖f‖q,(0.1)

where |∇f | is the Euclidean norm of the gradient of f , while ‖f‖q is the
usual Lq norm of f in R

n, and

c0 = n
1
p

(
n− p
p− 1

)1− 1
p
[
ωnΓ

(
n

p

)
Γ
(
n+ 1− n

p

)/
Γ(n)

] 1
n

,

where ωn is the n-dimensional volume enclosed by the unit sphere Sn−1

in R
n. Generalizations of (0.1) and related problems have been much

studied (see, e.g., [3], [5], [6], [7], [8], [9], [12], [13], [16], [23], [24], [26],
[27], [41], [42], and the references therein).

Since the case p = 1 of the sharp affine Lp Sobolev inequality was
settled in [42], in this paper we will focus exclusively on the case p > 1.

The basic concept behind our new inequality is a Banach space that
we will associate with each function in H1,p(Rn). The critical observa-
tion here is that this association is affine in nature. For real p ≥ 1, we
associate with each f ∈ H1,p(Rn) a Banach norm ‖ · ‖f,p on R

n. For
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v ∈ Sn−1 define

‖v‖f,p = ‖Dvf‖p =
(∫

Rn

|Dvf(x)|pdx
) 1

p

=
(∫

Rn

|v · ∇f(x)|pdx
) 1

p

,

where Dvf is the directional derivative of f in the direction v. The
integral on the right immediately provides the extension of ‖ · ‖f,p from
Sn−1 to R

n. Now (Rn, ‖ · ‖f,p) is the n-dimensional Banach space that
we shall associate with f . Its unit ball Bp(f) = {v ∈ R

n : ‖v‖f,p ≤ 1}
is a symmetric convex body in R

n and our new inequality states that
the volume of this unit ball, |Bp(f)|, can be bounded from above by the
reciprocal of the ordinary Lq-norm of f . Specifically, we have:

Theorem 1. Suppose p ∈ (1, n) and q is given by 1
q = 1

p − 1
n . If

f ∈ H1,p(Rn), then

|Bp(f)|1/n ≤ c1/‖f‖q,(0.2)

where the best possible c1 is given by

c1 =
(
p− 1
n− p

)1− 1
p

(
Γ(n)

Γ(n
p )Γ(n+ 1− n

p )

) 1
n
( √

πΓ(n+p
2 )

nΓ(n
2 )Γ(

p+1
2 )

) 1
p

and equality is attained when

f(x) = (a+ |A(x− x0)|
p

p−1 )1−
n
p ,

with A ∈ GL(n), real a > 0, and x0 ∈ R
n.

Since the volume of the symmetric convex body Bp(f) is obviously
given by

|Bp(f)| = 1
n

∫
Sn−1

‖Dvf‖−n
p dv,

we can rewrite our main theorem as the following affine Lp Sobolev
inequality:

Theorem 1′. Suppose p ∈ (1, n) and q is given by 1
q = 1

p − 1
n . If

f ∈ H1,p(Rn), then(∫
Sn−1

‖Dvf‖−n
p dv

)−1/n

≥ c2 ‖f‖q,(0.3)
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where the best possible c2 is given by

c2 =
(
n− p
p− 1

)1− 1
p

(
Γ(n

p )Γ(n+ 1− n
p )

Γ(n+ 1)

) 1
n
(
nΓ(n

2 )Γ(
p+1
2 )√

πΓ(n+p
2 )

) 1
p

and equality is attained when

f(x) =
(
a+ |A(x− x0)|

p
p−1

)1−n
p
,

with A ∈ GL(n), real a > 0, and x0 ∈ R
n.

Using the obvious fact that

1
n!

∫
Rn

e−‖Dvf‖pdv =
1
n

∫
Sn−1

‖Dvf‖−n
p dv,

we can in turn rewrite Theorem 1′ as:

Theorem 1′′. Suppose p ∈ (1, n) and q is given by 1
q = 1

p − 1
n . If

f ∈ H1,p(Rn), then(∫
Rn

e−‖Dvf‖pdv

)− 1
n

≥ c3 ‖f‖q,(0.4)

where the best possible c3 is given by

c3 =
(
n− p
p− 1

)1− 1
p

(
Γ(n

p )Γ(n+ 1− n
p )

Γ(n)Γ(n+ 1)

) 1
n
(
nΓ(n

2 )Γ(
p+1
2 )√

πΓ(n+p
2 )

) 1
p

,

and equality is attained when

f(x) =
(
a+ |A(x− x0)|

p
p−1

)1−n
p
,

with A ∈ GL(n), real a > 0, and x0 ∈ R
n.

Observe that inequality (0.4), and thus also inequality (0.3), is in-
variant under affine transformations of R

n, while the Lp Sobolev in-
equality (0.1) is invariant only under rigid motions.

That the affine Lp Sobolev inequality (0.3) or (0.4) is stronger than
the classical Lp Sobolev inequality (0.1) follows directly from the Hölder
inequality, as will be shown in Section 7. We also note that the affine L2

Sobolev inequality and the classical L2 Sobolev inequality are equivalent
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under an affine transformation since the L2 Banach norm ‖ · ‖f,2 is
Euclidean.

In Section 8, we present an application of the affine Lp Sobolev
inequality to information theory. For a random vector X in a finite
dimensional Banach space that is associated to a function f , we prove
a sharp inequality that gives the best lower bound of the moments of
X with respect to the Banach norm in terms of the λ-Renýi entropy
of X and the Lq norm of f . Additional applications will be given in a
forthcoming paper.

1. Background

For quick reference we list some facts about convex bodies. See
[19], [37] and [40] for additional details. A convex body is a compact
convex set in R

n with nonempty interior. In this paper it will always be
assumed that a convex body contains the origin in its interior. A convex
body K is uniquely determined by its support function h(K, · ) = hK :
R

n → [0,∞), defined for v ∈ R
n by

hK(v) = max{v · x : x ∈ K},
where v · x denotes the usual inner product of v and x in R

n. The
n-dimensional volume of K will be denoted by V (K) or |K|.

For real p ≥ 1, convex bodies K,L and real ε > 0, the Minkowski-
Firey Lp combination, K +p ε ·L, is the convex body whose support
function is given

h(K +p ε·L, ·)p = h(K, ·)p + εh(L, · )p.
The Lp-mixed volume Vp(K,L) of convex bodies K and L is defined

by

Vp(K,L) =
p

n
lim

ε→0+

V (K +p ε · L)− V (K)
ε

.

Note that Vp(Q,Q) = V (Q) for each convex body Q. It was shown in
[29] that there exists a unique finite positive Borel measure Sp(K, · )
on Sn−1 such that

Vp(K,Q) =
1
n

∫
Sn−1

hQ(v)pdSp(K, v),(1.1)

for each convex body Q. The measure Sp(K, · ) is called the Lp-surface
area measure of K. The measure S1(K, · ) = SK is the classical surface
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area measure of K. It was shown in [29] that the measure Sp(K, · )
is absolutely continuous with respect to SK and the Radon-Nikodym
derivative

dSp(K, · )
dSK

= h1−p
K .

If the boundary, ∂K, of K is C2 with positive curvature, then the
Radon-Nikodym derivative of SK with respect to the Lebesgue measure
on Sn−1 is the reciprocal of the Gauss curvature of ∂K (when viewed
as a function of the outer normals of ∂K).

A compact domain is the closure of a bounded open set. For compact
domains M1,M2 and real λ1, λ1 ≥ 0, the Minkowski linear combination
λ1M1 + λ2M2 is defined by

λ1M1 + λ2M2 = {λ1x1 + λ2x2 : x1 ∈M1 and x2 ∈M2}.

The Brunn-Minkowski inequality states that if M1,M2 are compact do-
mains in R

n and λ1, λ1 ≥ 0, then

V (λ1M1 + λ2M2)1/n ≥ λ1V (M1)1/n + λ2V (M2)1/n,

where V denotes n-dimensional Lebesgue measure. If M is a com-
pact domain and K is a convex body in R

n, define the mixed volume,
V1(M,K), of M and K by

nV1(M,K) = lim inf
ε→0+

V (M + εK)− V (M)
ε

.

We shall require the following Minkowski mixed volume inequality for
compact domains: If M is a compact domain in R

n and K is a convex
body in R

n, then

V1(M,K)n ≥ V (M)n−1V (K).(1.2)

Note that (1.2) follows immediately from the definition of mixed volumes
and the Brunn-Minkowski inequality:

V1(M,K) =
1
n
lim inf
ε→0+

V (M + εK)− V (M)
ε

≥ 1
n

lim
ε→0+

[V (M)1/n + εV (K)1/n]n − V (M)
ε

= V (M)
n−1

n V (K)
1
n .
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We will also require the following integral representation: Suppose
M is a compact domain with C1 boundary, ∂M . Then, if K is a convex
body in R

n,

V1(M,K) =
1
n

∫
∂M

hK(ν(x))dSM (x),(1.3)

where ν(x) denotes the exterior unit normal at x ∈ ∂M , and dSM (x) is
the surface area element at x ∈ ∂M . Identity (1.3) can be found, e.g.,
in [42].

2. Affine Lp isoperimetric inequalities

We require an Lp-affine isoperimetric inequality that was first proved
in [31] (see Campi and Gronchi [11] for an alternative proof and gen-
eralizations). This inequality is one of the key ingredients in the proof
of Theorem 1. Special cases of this new inequality and their relations
to other affine isoperimetric inequalities can be found in, e.g., [28] and
[25].

While the Lp mixed volume Vp( · , · ) has been defined only for
compact convex sets that contain the origin in their interiors, a simple
continuity argument allows us to extend the definition of the Lp-mixed
volume Vp(K,L) to the case where K is a compact convex set that
contains the origin in its interior and L is a compact convex set that
contains the origin in its relative interior. For u ∈ Sn−1, let u denote
the line segment connecting the points −u/2 to u/2. Note that from
(1.1) we have

Vp(K,u) =
1
2pn

∫
Sn−1

|v · u|pdSp(K, v),(2.1)

for each u ∈ Sn−1.
Let c4 be defined by

c4 =
√
πΓ(n+p

2 )

Γ(n
2 + 1)Γ(p+1

2 )
.

The following affine isoperimetric inequality was established in [31] and
will be critical in establishing the affine Lp Sobolev inequality:
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Theorem 2.1. If p > 1 and K is a convex body in R
n that contains

the origin in its interior, then(∫
Sn−1

Vp(K, v)
−n

p dv

) p
n

V (K)
n−p

n ≤ 2p−1n1+
p
n c4,(2.2)

with equality if and only if K is an ellipsoid centered at the origin.

As an aside, we note that the actual inequality presented in [31]
relates the volume of a convex body to that of its polar Lp projection
body. However, the polar coordinate formula for volume quickly shows
the equivalence of (2.2) and the polar Lp projection inequality that was
established in [31].

3. The Lp Minkowski problem

We shall construct a family of convex bodies from a given function
by using the solution to the even Lp-Minkowski problem. This will allow
us to use the affine isoperimetric inequality (2.2) to establish Theorem 1.

A Borel measure on Sn−1 is said to be even if for each Borel set
ω ⊂ Sn−1 the measure of ω and −ω = {−x : x ∈ ω} are equal. In [29],
the following solution to the even case of the Lp-Minkowski problem is
given:

Theorem 3.1. Suppose µ is an even positive measure on Sn−1 that
is not supported on a great hypersphere of Sn−1. Then for real p ≥ 1
such that p �= n there exists a unique origin-symmetric convex body K
in R

n whose Lp-surface area measure is µ; i.e.,

µ = Sp(K, · ).

We now define for functions (rather than bodies) the notions of Lp

mixed volumes. Suppose f ∈ H1,p(Rn) ∩ C∞(Rn). For each real t > 0,
define the level set,

[f ]t = {x ∈ R
n : |f(x)| ≥ t}.

Then [f ]t is compact for each t > 0. By Sard’s theorem, for almost
all t > 0, the boundary of the level set ∂[f ]t is a C1 submanifold with
everywhere nonzero normal vector ∇f . Abbreviate the surface area
element of ∂[f ]t by dSt. If Q is a compact convex set that contains the
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origin in its relative interior, then define the Lp-mixed volume Vp(f, t,Q),
by

Vp(f, t,Q) =
1
n

∫
∂[f ]t

hQ(ν(x))p|∇f(x)|p−1dSt(x),(3.1)

where ν(x) = ∇f(x)/|∇f(x)| is the outer unit normal at x ∈ ∂[f ]t. In
particular, when Q is the line segment joining the points −v/2 and v/2,
we have

Vp(f, t, v) =
1
2pn

∫
∂[f ]t

|v · ∇f(x)|p|∇f(x)|−1dSt(x),(3.2)

for each v ∈ Sn−1.
The following lemma shows that, for each fixed real p ≥ 1, there is a

natural way to associate a family of convex bodies with a given function.

Lemma 3.2. If f ∈ H1,p(Rn) ∩ C∞(Rn), then for almost every
t > 0, there exists an origin-symmetric convex body Kt whose volume is
given by

V (Kt) = Vp(f, t,Kt)(3.3a)

and such that for all v ∈ Sn−1,

Vp(f, t, v) = Vp(Kt, v).(3.3b)

Proof. Define the positive Borel measure µt on Sn−1 by∫
Sn−1

g(v)dµt(v) =
∫

∂[f ]t

g(ν(x))|∇f(x)|p−1dSt(x),(3.4)

for each continuous g : Sn−1 → R. Define the even Borel measure µ∗t on
Sn−1 by letting

µ∗t (ω) =
1
2
µt(ω) +

1
2
µt(−ω),

for each Borel ω ⊂ Sn−1. Obviously, for each continuous even g :
Sn−1 → R, ∫

Sn−1

g(v) dµ∗t (v) =
∫

Sn−1

g(v) dµt(v).(3.5)
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From (3.5), (3.4), and the fact that [f ]t has nonempty interior, it
follows that for each u ∈ Sn−1,∫

Sn−1

|u · v|dµ∗t (v) =
∫

Sn−1

|u · v|dµt(v)

=
∫

∂[f ]t

|u · ν(x)||∇f(x)|p−1dSt(x) > 0.

Hence, the measure µ∗t is not supported on any great hypersphere of
Sn−1. By Theorem 3.1, there exists a unique origin-symmetric convex
body Kt so that

dµ∗t = dSp(Kt, · ) = h1−p
Kt
dSKt .(3.6)

To see that for each origin-symmetric convex body Q,

Vp(Kt, Q) = Vp(f, t,Q),(3.7)

note that from (1.1) and (3.6), (3.5), (3.4) and definition (3.1), it follows
that

Vp(Kt, Q) =
1
n

∫
Sn−1

hQ(v)p dµ∗t (v)

=
1
n

∫
Sn−1

hQ(v)p dµt(v)

=
1
n

∫
∂[f ]t

hQ(ν(x))p|∇f(x)|p−1dSt(x)

= Vp(f, t,Q).

Now (3.7) and a continuity argument immediately yields (3.3b). To
get (3.3a) take Q = Kt in (3.7) and recall that Vp(Q,Q) = V (Q). q.e.d.

4. An integral inequality

The following well-known (see, e.g., [1]) consequence of Bliss’ in-
equality [4] will be needed. For the sake of completeness we include an
elementary proof that uses techniques similar to ones used in [15].

Lemma 4.1. Let f be a nonnegative differentiable function in
(0,∞), q = np

n−p , and 1 < p < n. If the integrals exist, then(∫ ∞

0
|f ′(x)|pxn−1dx

) 1
p

≥ c5

(∫ ∞

0
f(x)qxn−1dx

) 1
q

,
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where

c5 = n
1
q

(
n− p
p− 1

)1− 1
p
[
Γ
(
n

p

)
Γ
(
n+ 1− n

p

)/
Γ(n)

] 1
n

= (nωn)−
1
n c0,

Equality holds if f(x) = (ax
p

p−1 + b)1−
n
p , with a, b > 0.

Proof. It suffices to prove the inequality for a nonnegative compactly
supported smooth function f satisfying∫ ∞

0
f(x)qxn−1dx = 1.

Let f0 : (0,∞) → [0,∞) be a continuous function that is supported on
a bounded interval [0, R) for some R > 0 and that satisfies∫ ∞

0
f0(x)qxn−1dx =

∫ ∞

0
f0(x)qxp∗+n−1dx = 1,

where p∗ = p
p−1 . Define y : [0,∞) → [0, R] by∫ x

0
f(s)qsn−1ds =

∫ y(x)

0
f0(t)qtn−1dt.

It follows that

f0(y)q−
q
n yn−1y′ = f(x)q−

q
nxn−1

[(y
x

)n−1
y′
] 1

n

(4.1)

≤ 1
n
f(x)q−

q
nxn−1

(
(n− 1)

y

x
+ y′

)
=

1
n
f(x)q−

q
n (xn−1y)′.

Equality in the inequality holds if and only if y = λx, λ > 0.
Integration by parts and the Hölder inequality give∫ ∞

0
f(x)q−

q
n (xn−1y)′dx(4.2)

= −
(
q − q

n

)∫ ∞

0
f(x)q−

q
n
−1f ′(x)xn−1y dx

≤
(
q − q

n

)∫ ∞

0
f(x)q−

q
n
−1|f ′(x)|xn−1y dx

≤
(
q − q

n

)(∫ ∞

0
yp∗f qxn−1dx

) 1
p∗
(∫ ∞

0
|f ′|pxn−1dx

) 1
p

=
(
q − q

n

)(∫ ∞

0
f q
0y

p∗+n−1dy

) 1
p∗
(∫ ∞

0
|f ′|pxn−1dx

) 1
p

.
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By (4.1) and (4.2),(∫ ∞

0
|f ′|pxn−1dx

) 1
p

≥ n(n− p)
p(n− 1)

∫ ∞

0
f

q−q/n
0 yn−1dy.(4.3)

Since (4.3) holds for any compactly supported function f0, it holds for
any positive continuous function. Moreover, equality holds for (4.3) if
y = λx and f ′ = βf

n
n−p y

1
p−1 for some constant β. Integrating this gives

the extremal function. In particular, the desired inequality follows by
setting f0(y) = (ay

p
p−1 + b)1−

n
p , where a and b are chosen so that f0

satisfies the required normalizations. q.e.d.

5. A lemma about rearrangements

For f : R
n → R and real t > 0, let

[f ]t = {x ∈ R
n : |f(x)| ≥ t},

denote the level sets of f . We always assume that our functions are
such that the level sets [f ]t are compact for all t > 0.

The decreasing rearrangement, f , of f : R
n → R is defined by

f(x) = inf{t > 0 : V ([f ]t) < ωn|x|n},
where ωn|x|n is the n-dimensional volume of the ball of radius |x| in
R

n. The set [f ]t = {x ∈ R
n : f(x) ≥ t} is a dilate of the unit ball,

B = {x ∈ R
n : |x| ≤ 1}, and its volume is equal to V ([f ]t); i.e.,

V ([f ]t) = V ([f ]t).

The functions f and f are equimeasurable, and therefore for all q ≥ 1

‖f‖q = ‖f‖q.(5.1)

Note that since f(x) depends only on the magnitude, |x|, of x
(and not on the direction of x), there exists an increasing function
f̂ : (0,∞) → R defined by

f(x) = f̂(1/|x|).(5.2)

Observe that provided f is sufficiently smooth, f(x) = t implies (by
definition of f) that V ([f ]t) = ωn|x|n, or equivalently, f̂(1/|x|) = t
implies V ([f ]t) = ωn|x|n.

The following is needed in the proof of the main theorem:
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Lemma 5.1. If f ∈ H1,p(Rn) ∩ C∞(Rn), then

∫ ∞

0
V ([f ]t)

p(n−1)
n (−V ′([f ]t))1−pdt =

n1−p

ω
p−n

n
n

∫ ∞

0
(f̂ ′(s))ps2p−n−1ds,

(5.3)

and

‖f‖q
q = nωn

∫ ∞

0
f̂(s)qs−n−1ds.(5.4)

Proof. Let t = f̂(s). Since f̂(1/|x|) = t implies V ([f ]t) = ωn|x|n,

V ([f ]t) = s−nωn,

and hence
−V ′([f ]t) = ns−n−1ds

dt
ωn.

It follows that

V ([f ]t)
p(n−1)

n (−V ′([f ]t))1−pdt = n1−ps2p−n−1

(
ds

dt

)−p

dsω
1− p

n
n ,

which gives (5.3). To get (5.4) simply rewrite the defining integral for
‖f‖q

q in polar coordinates. q.e.d.

6. Affine Lp Sobolev inequalities

Theorem 1′. Suppose p ∈ (0, 1), and q is given by 1
q = 1

p − 1
n . If

f ∈ H1,p(Rn), then(∫
Sn−1

‖Dvf‖−n
p dv

)−1/n

≥ c2‖f‖q,(6.1)

where the optimal c2 is given by

c2 =
(
n− p
p− 1

)1− 1
p

(
Γ(n

p )Γ(n+ 1− n
p )

Γ(n+ 1)

) 1
n
(
nΓ(n

2 )Γ(
p+1
2 )√

πΓ(n+p
2 )

) 1
p

= (2/nc4)
1
p (nωn)−

1
n c0
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and equality is attained when

f(x) = (a+ |A(x− x0)|
p

p−1 )1−
n
p ,

with A ∈ GL(n), real a > 0 and x0 ∈ R
n.

Proof. It suffices to prove the inequality for compactly supported
f ∈ C∞(Rn). For t > 0, consider the level sets of f ,

[f ]t = {x ∈ R
n : |f(x)| ≥ t}.

By Sard’s theorem, for almost all t > 0 the boundary, ∂[f ]t, of the level
set is a C1 submanifold which has everywhere nonzero normal vector
∇f . Let dSt denote the surface area element of ∂[f ]t. For t > 0, let Kt

be the convex body constructed from f in Lemma 3.2.
We first need

‖Dvf‖p
p = 2pn

∫ ∞

0
Vp(Kt, v)dt.(6.2)

To see this simply note that by rewriting the integral, using (3.2), and
then using (3.3b) we have

‖Dvf‖p
p =

∫
Rn

|v · ∇f(x)|pdx

=
∫ ∞

0

∫
∂[f ]t

|v · ∇f(x)|p|∇f(x)|−1dSt(x) dt

= 2pn

∫ ∞

0
Vp(f, t, v)dt

= 2pn

∫ ∞

0
Vp(Kt, v)dt.

We need the fact that

V (Kt)n−p ≥ V ([f ]t)(n−1)p(−n−1V ′([f ]t))n(1−p).(6.3)

To see this, note that from (3.3a), definition (3.1), the Hölder inequality,
definition (3.1) again, the extended Minkowski mixed volume inequality
(1.2), and the co-area formula, we have
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V (Kt)
n−p
np

= V (Kt)−
1
nVp(f, t,Kt)

1
p

= V (Kt)−
1
n

(
1
n

∫
∂[f ]t

hKt(ν(x))
p|∇f(x)|p−1dSt(x)

) 1
p

≥ n
− 1

pV (Kt)−
1
n

(∫
∂[f ]t

|∇f |−1dSt

) 1−p
p ∫

∂[f ]t

hKt(ν(x))dSt(x)

= n
1− 1

pV (Kt)−
1
n

(∫
∂[f ]t

|∇f |−1dSt

) 1−p
p

V1([f ]t,Kt)

≥ n
1− 1

p

(∫
∂[f ]t

|∇f |−1dSt

) 1−p
p

V ([f ]t)
n−1

n

= n
1− 1

p
(−V ′([f ]t)

) 1−p
p V ([f ]t)

n−1
n .

To complete the proof, observe that from (6.2), the Minkowski in-
equality for integrals, the affine inequality (2.2), (6.3), (5.3), (5.4), and
(5.1), (∫

Sn−1

‖Dvf‖−n
p dv

)− p
n

= 2pn

(∫
Sn−1

(∫ ∞

0
Vp(Kt, v) dt

)−n
p

dv

)− p
n

≥ 2pn

∫ ∞

0

(∫
Sn−1

Vp(Kt, v)
−n

p dv

)− p
n

dt

≥ 2
c4np/n

∫ ∞

0
V (Kt)

n−p
n dt

≥ 2np−1− p
n

c4

∫ ∞

0
V ([f ]t)

(n−1)p
n (−V ′([f ]t))1−pdt

=
2n−

p
nω

n−p
n

n

c4

∫ ∞

0
(f̂ ′(s))ps2p−n−1ds

≥ 2
nc4

c(f̂)p‖f‖p
q

=
2
nc4

c(f̂)p‖f‖p
q ,
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where

c(f̂) =
(∫ ∞

0
(f̂ ′(s))ps2p−n−1ds

) 1
p
(∫ ∞

0
f̂(s)qs−n−1ds

)− 1
q

.

Make the substitution t = 1/s and then define the function g by g(t) =
f̂(1/t), to get

c(f̂) =
(∫ ∞

0
|g′(t)|ptn−1dt

) 1
p
(∫ ∞

0
g(t)qtn−1dt

)− 1
q

,

(recall that f̂ is increasing and thus g′ is always negative). Lemma 4.1
gives

c(f̂) ≥ c5

and this proves the desired inequality. q.e.d.

Remark. The affine Lp-Sobolev inequality (0.4) implies the affine
Lp-isoperimetric inequality (2.2). This can be seen by taking

f(x) =
(
1 + ρK(x)

p
1−p

)1−n
p
,

where ρK(x) = max{λ ≥ 0 : λx ∈ K} denotes the radial function of
K.

A simple calculation shows that

‖Dvf‖p
p = c6Vp(K, v),

where

c6 = n2p

(
n− p
p− 1

)p−1

Γ
(
n

p

)
Γ
(
n+ 1− n

p

)/
Γ(n).

Therefore, (2.2) is one of the consequences of the new inequality (0.4).

7. The Lp and affine Lp Sobolev inequalities

We will show that the new affine Lp Sobolev inequality is indeed
stronger (and directly implies) the sharp Lp Sobolev inequality.

First observe that(
1
nωn

∫
Sn−1

‖Dvf‖−n
p dv

)− p
n

≤ 2
nc4

∫
Rn

|∇f(x)|pdx.(7.1)
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To see this, note that from the Hölder inequality and Fubini’s theorem
we have (

1
nωn

∫
Sn−1

‖Dvf‖−n
p dv

)− p
n

≤ 1
nωn

∫
Sn−1

‖Dvf‖p
pdv

=
1
nωn

∫
Sn−1

∫
Rn

|v · ∇f(x)|pdxdv

=
1
nωn

∫
Rn

∫
Sn−1

|v · ∇f(x)|pdvdx

=
1
nωn

∫
Sn−1

|u0 · v|pdv
∫

Rn

|∇f(x)|pdx,

=
2
nc4

∫
Rn

|∇f(x)|pdx,

where u0 is any fixed unit vector.
Now combine (7.1) with the affine Lp Sobolev inequality (6.1) to get:

(∫
Rn

|∇f |p dx
) 1

p

≥ [nc4/2]1/p

(
1
nωn

∫
Sn−1

‖Dvf‖−n
p dv

)− 1
n

≥ c0 ‖f‖q.

(7.2)

From the equality conditions in the Hölder inequality it follows that
equality in the left inequality in (7.2) occurs precisely when f is such
that ‖Dvf‖p is independent of v ∈ Sn−1.

8. An application to information theory

In this section we use Theorem 1 to prove a moment-entropy in-
equality for a Banach space–valued random variable X.

Let X be a random vector in R
n with probability density g. Given

λ > 0, the λ-Renyi entropy power Nλ(X) is defined by

Nλ(X) =

{
‖g‖

λ
1−λ

λ λ �= 1
e−

∫
g log g λ = 1.

Observe that N1(X) is the Shannon entropy power of X, and

lim
λ→1

Nλ(X) = N1(X).
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A random vector X in R
n with density function g is said to have

finite rth-moment, r > 0, if∫
Rn

|x|rg(x)dx <∞.

IfX is a random vector in R
n with finite rth-moment, andK is an origin-

symmetric convex body in R
n, then the dual mixed volume Ṽ−r(X,K)

was defined in [32] by

Ṽ−r(X,K) =
n+ r
n

∫
Rn

‖x‖r
Kg(x) dx,(8.1)

where g is the density function of X and ‖ · ‖K is the norm of the
n-dimensional Banach space whose unit ball is K; i.e., for x ∈ R

n

‖x‖K = min{λ > 0 : x ∈ λK}.
The following is a special case of the dual Minkowski inequality

established in [32].

Lemma 8.1. Suppose r > 0 and λ > n
n+r . If K is an origin-

symmetric convex body in R
n and X is a random vector in R

n with
finite rth-moment, then

Ṽ−r(X,K)
1
r ≥ c7[Nλ(X)/|K| ] 1

n ,

where the best constant c7 is given by

c7 =



(
1− n(1−λ)

rλ

) 1
n(1−λ)

(
λ− n

n+r

1−λ

)− 1
r
(

n
rB
(

n
r ,

1
1−λ − n

r

))− 1
n

λ < 1,

(n+r
re )

1
rΓ
(

n
r + 1

)− 1
n λ = 1,(

1 + n(λ−1)
rλ

) 1
n(1−λ)

(
λ− n

n+r

λ−1

)− 1
r
(

n
rB
(

n
r ,

λ
λ−1

))− 1
n

λ > 1.

Given a function f ∈ H1,p(Rn), let ‖ · ‖f,p denote the associated
Banach norm defined in the Introduction. If X is a random vector in
the Banach space (Rn, ‖ · ‖f,p), the rth moment of X is E(‖X‖r

f,p). The
following theorem gives a sharp lower bound of the moment E(‖X‖r

f,p)
in terms of the Renyi entropy power Nλ(X) and the Lq norm ‖f‖q.

Theorem 8.2. Suppose 1 ≤ p < n, q = np
n−p , r > 0, and λ > n

n+r .
If f ∈ H1,p(Rn) and X is a random vector in R

n with finite rth-moment,
then

E(‖X‖r
f,p) ≥ c8Nλ(X)

r
n ‖f‖r

q,

where the best constant c8 = ncr7c
−r
1 /(n+ r).
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Proof. Let Bp(f) denote the unit ball associated with the norm
‖ · ‖f,p. Let g be the density function of X. Note that inequality (0.3)
holds when p = 1 (see [42]), and thus inequality (0.2) holds when p = 1.
From (8.1), Lemma 8.1, and (0.2), we have

E(‖X‖r
f,p) =

∫
Rn

‖x‖r
f,p g(x) dx

=
n

n+ r
Ṽ−r(X,Bp(f))

≥ n

n+ r
cr7[Nλ(X)/|Bp(f)| ] r

n

≥ n

n+ r
cr7[Nλ(X)c−n

1 ‖f‖n
q ]

r
n

= c8[Nλ(X)‖f‖n
q ]

r
n .

q.e.d.
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